Enrollment No:	Exam Seat No:
----------------	---------------

C.U.SHAH UNIVERSITY

Summer Examination-2017

Subject Name: Engineering Mathematics-IV

Subject Code: 4TE04EMT1 Branch: B.Tech (Mech,Auto,EC,EE,EEE,Civil,IC)

Semester: 4 Date: 03/05/2017 Time: 02:00 To 05:00 Marks: 70 Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q.1 Attempt the following questions: (14)

- A) Define: Gradient of the scalar field. (1)
- **B**) If f(z) = u(x, y) + iv(x, y) is analytic then $f'(z) = \dots$ (1)

$$(a)\frac{\partial u}{\partial x} + i\frac{\partial u}{\partial y} \qquad (b)\frac{\partial u}{\partial x} - i\frac{\partial v}{\partial x} \quad (c)\frac{\partial v}{\partial y} + i\frac{\partial v}{\partial x} \quad (d) \text{ None of these}$$

- C) True/False: The function $f(z) = \overline{z}$ is not analytic at any point. (1)
- **D**) Write Fourier cosine transform of f(t). (1)
- **E**) State Simpson's 1/3 Rule. (1)
- **F)** True/False: In ODE number of independent variables are more than one. (1)
- G) The image of circle |z-1|=1 in the complex plane, under the mapping (1)

$$w = u + iv = \frac{1}{z}$$
 is

(a)
$$|w-1| = 1$$
 (b) $u^2 + v^2 = 1$ (c) $u = \frac{1}{z}$ (d) $v = \frac{1}{z}$

- **H**) The function $u(x, y) = 2x x^2 + py^2$ is harmonic if $p = \dots$ (1)
 - (a) 0 (b) 1 (c) 2 (d) 3
- I) Define: Solenoidal vector. (1)
- **J**) True/False: In usual notation $\nabla = 1 E^{-1}$. (1)
- **K**) Show that $hD = \log(1 + \Delta)$ (2)
- **L)** If $F = xz^3i 2x^2yz + 2yz^4k$ then find *curl F* at the point (1, -1, 1). (2)

Attempt any four questions from Q-2 to Q-8

- Q.2 Attempt all questions (14)
- A) The following table gives the values of density of saturated water for various temperatures of saturated steam-

Temp T (C°)	100	150	200		250		300	
Density d (ng/m ³)	958	917	865		799		712	
Find by interpolation, 275 °C.								(O. A)
Using Lagrange's Inte	rpolation	n ,express	$f(x) = \frac{1}{(x)^2}$	$\frac{3x^2+}{(x-1)(x-1)}$	$\frac{x+1}{(x-3)(x-3)}$	as sui	m of	(04)
partial fractions.								
				x + y +	z = 9		,	(O.4)
Apply Guass Jordan Me	thod to s	olve the e	quations	2x-3y	y + 4z = 1	13	((04)
				3x + 4y	y + 5z = 0	40		
Attempt all questions	;							(14)
Given that -	1.1	1.2	1.2	1 1 1	1	5	1.6	(05)
	3.403	1.2 8.781	1.3 9.129	9.45		750	10.031	
		0.701	7.127	7.73	7.	730	10.031	
Find $\frac{dy}{dx} & \frac{d^2y}{dx^2}$ at x=	1.6 .							
A river is 80 meter wid								(05)
one bank is given by the			e. Calcula	ate the a	area of c	cross se	ection of	
the river using Simpso $x = 0$ 10	$\frac{\text{n s } 3/8 \text{ J}}{20}$	30	40	50	60	70	80	
x 0 10 d 0 4	7	9	12	15	14	8	3	
Using R-K method of fourth order compute y(0.2) & y(0.4) given								
$\frac{dy}{dx} = y - \frac{2x}{y}; y(0) = 1.$			1 ,	, ,	, , ,			(04)
Attempt all questions	!						((14)
Show that $u(x, y) = 2x - x^3 + 3xy^2$ is Harmonic in some domain & find a								(05)
harmonic conjugate of		,,,, 15 11.		ii soine	doman	1 cc 11111	a a	,
Using Milne Thompso		d determ	ine the a	nalvtic	function	whose	e ((05)
imaginary part $v(x, y)$				<i>j</i>			•	(00)
Define Mobius transfo	`		,	ohine ti	ransforn	nation	that ((04)
maps $z_1 = 0$, $z_2 = 1$, $z_3 = 1$							······································	(04)
Attempt all questions		,,,	., .,	3 1.0	specific	.,.	((14)
Define Directional Derivative of function. Find the Directional derivative of								(05)
$\phi = xy^2 + yz^3$ at the poi								
$x\log z - y^2 = 4 \text{ at } (-1)$,2,1).							
Define Curl of a Vector	field. Sh	ow that	A fluid mo	otion is §	given by		((05)

B)

C)

Q.3 A)

B)

C)

Q.4 A)

B)

C)

Q.5 A)

 $v = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^2)k \text{ is Irrotational }.$ $\textbf{C}) \text{ Solve the initial value problem } \frac{dy}{dx} = x\sqrt{y}, y(1) = 1 \text{ \& hence find } y(1.5) \text{ by }$ (04)taking h=0.1 using Euler's method.

(14) Q.6 Attempt all questions

Find Fourier sine transform of $e^{-\frac{ax}{x}}$. (05)

B)	Find the Fourier cosine transform of e^{-x^2} .	(05)
C)	Check Whether $f(z) = \cos z$ is analytic or not. If analytic, find its derivative.	(04)
Q.7 A)	Attempt all questions State Green's Theorem. Verify Green's Theorem for $\iint_{c} \left[\left(x^{2} - 2xy \right) dx + \left(x^{2}y + 3 \right) dy \right]$ Where C is the boundary of the bounded	(14) (09)
B)	region by the parabola $y = x^2$ & line $y = x$. Define: Line Integral. Find Work done if $\vec{F} = 2x^2j + 3xyk$ displace a particle in the xy-plane from $(0,0)$ to $(1,4)$ along the curve $y = 4x^2$.	(05)
Q.8 A)	Attempt all questions State Stokes's Theorem. Verify Stokes's theorem for the vector field $\vec{F} = (x^2 - y^2)i + 2xyj$ in the rectangular region in the xy-plane bounded by	(14) (09)
B)	x = -a, x = a, y = 0, y = b. Define: Divergence. For which value of the component v_3 is $v = e^x \cos yi + e^x \sin yj + v_3k$ is Solenoidal.	(05)

